B.Tech. DEGREE EXAMINATION, MAY 2016

Second Semester

15MA102 - ADVANCED CALCULUS AND COMPLEX ANALYSIS

(For the candidates admitted during the academic year 2015 -2016)

Note:

(i) Part - A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.

(ii) Part - B and Part - C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions

1. $\int_{1}^{ba} \frac{dxdy}{xy}$ is equal to

(A) log a +log b

(C) log b

(B) log a

(D) log a log b

2. The value of $\iiint_{000}^{123} dx dy dz$ is

(A) 3

(B) 4

(C) 2

(D) 6

3. Area of the double integral in polar co-ordinate is equal to

(A) $\iint_{R} dr d\theta$

(B) $\iint r^2 dr d\theta$

(C) $\iint_R r dr d\theta$

(D) $\iint_{R} (r+1) dr d\theta$

4. What is the value of $\int_{0}^{1x} dx dy$

(A) $\frac{1}{2}$

(B) -1

(C) 1

(D) $\frac{1}{3}$

5. Curl (grad φ) is

(A) -1

(B) 1

(C) 0

(D) φ

6. If $\varphi = xyz$ then $\nabla \phi$ is

(A) $yz\vec{i} + zx\vec{j} + xy\vec{k}$

(B) $xy\vec{i} + yz\vec{j} + zx\vec{k}$

(C) 0

(D) $zx\vec{i} + xy\vec{j} + yz\vec{k}$

7. The condition for \overline{F} to be conservative is \overline{F} should be

(A) Solenoidal vector

(B) Irrotational vector

(C) Rotational vector

(D) Neither solenidal nor irrotational

- 8. The connection between a line integral and double integral is known as
 - (A) Green's theorem

(B) Stoke's theorem

(C) Divergence theorem

(D) Convolution theorem

- 9. L (sin 3t) is equal to

(A) $\frac{3}{s^2 - 3}$ (C) $\frac{3}{s^2 + 9}$

- 10. The value of the function $f(t) = ae^{-bt}$ using initial value theorem is
 - (A) a

(B) a^2

(C) ab

- (D) 0
- 11. $L\left[\int_{0}^{t} \sin t \, dt\right] = \underline{\hspace{1cm}}$

- 12. L (t4) is equal to

- 13. An analytic function with constant modulus is
 - (A) A function of x

(B) A function of y

(C) Constant

- (D) A function of z
- 14. If u + iv is analytic, then the curves $u = c_1$ and $v = c_2$.
 - (A) Intersect each other

(B) Cut orthogonally

(C) Are parallel

- (D) Coincides
- 15. The function $w = \sin x \cosh y + i \cos x \sinh y$ is
 - (A) Continuous

(B) Differentiate at origin

(C) Analytic

- (D) Need not be analytic
- 16. The invariant points of the transformation $W = \frac{z-1}{z+1}$ is
 - $(A) \pm i$

 $(B) \pm 1$

(C) 2,7

- (D) 0
- The value of $\oint_C \frac{(3z^2 + 7z + 1)}{z + 1} dz$ where C is $|z| = \frac{1}{2}$ is equal to
 - (A) $2\pi i$

(B) 0

(C) π i

(D) -1

- The singularity of $f(z) = \frac{z}{(z-2)^3}$ is
 - (A) Essential singularity
 - (C) Pole of order 3

- (B) Removable singularity
- (D) Pole of order 1
- If f(z) is analytic inside and on C, the value of $\oint \frac{f(z)}{c(z-a)^2} dz$, where C is a simple closed curve and 'a' is any point with in 'C' is
 - (A) $f^{1}(a)$

(B) 0

(C) $\pi i f^1(a)$

- (D) $2\pi i f^{1}(a)$
- The part $\sum_{n=1}^{\infty} b_n (z-a)^{-n}$ is consisting of negative integral powers of (z-a) is called as
 - (A) Analytic part of Laurent series
- (B) The principal part of Laurent series
- (C) Real part of Laurent series
- (D) Imaginary part of Laurent series

$PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions

- Using double integration, find the area of an ellipse $\frac{x^2}{\sigma^2} + \frac{y^2}{h^2} = 1$. 21.
- Show that $r^n \overline{r}$ is an irrotational vector for any value of 'n' and is solenoided for n = -3. 22.
- 23. Find $L\left[\frac{e^{-t}-e^{-3t}}{t}\right]$.
- Verify final value theorem for the function $1 + e^{-t} (\sin t + \cos t)$. 24.
- Find the constants a, b, c if f(z) = x + ay + i(bx + cy) is analytic. 25.
- Evaluate using divergence theorem $\iint (x+z)dydz + (y+z)dzdx + (x+y)dxdy$ over the 26. sphere $x^2 + y^2 + z^2 = 4$
- Evaluate $\oint \frac{(z+1)}{z(z-1)} dz$; C is |z| = 2. 27.

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

Change the order of integration and hence evaluate $\int_{0}^{1/2-x} \int_{0}^{x} xydydx$.

(OR)

- b. Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ by using triple integration.
- 29. a. Verify Stoke's theorem for $\vec{F} = (y-z+2)\vec{i} + (yz+4)\vec{j} xy\vec{k}$ where S is an open surface of a cube x = 0, x = 2, y = 0, y = 2 and z = 0, z = 2.
 - b.i. Show that $\overline{A} = (x^2 + y^2 + x)\hat{i} + (2xy + y)\hat{j}$ is irrotational and hence find the scalar potential.
 - ii. Evaluate $\oint_c (x^2 + y^2) dx 2xy dy$ taken over the rectangle bounded by the lines $x = \pm a$, y = 0,
- 30. a.i. Find the Laplace transform of $f(t) = \begin{cases} t, & 0 < t \le 2 \\ 4 t, & 2 \le t < 4 \end{cases}$ and satisfy f(t+4) = f(t).
 - ii. Find $L[te^{-t}\sin t]$.
 - Using Laplace transform method solve $\frac{d^2x}{dt^2} 2\frac{dx}{dt} + x = e^{-t}$ given x(0) = 2, $x^1(0) = 1$.
 - Find the analytic function f(z) = u + iv where $u v = \frac{\sin 2x}{\cosh 2y \cos 2x}$.

- b. Find the bilinear transformation that maps the point ∞ , i, 0 into 0, i, ∞ respectively.
- 32. a.i. Evaluate $\oint \frac{e^{2z}}{\cos \pi z} dz$ where C is a circle |z| = 1.
 - ii. Expand $f(z) = \frac{1}{(z-1)(z-2)}$ as a Laurent's series valid in the region.

 - (1) |z| < 1(2) 1 < |z| < 2(3) |z| > 2.

(OR)

b. Evaluate $\int_{0}^{2\pi} \frac{d\theta}{5 + 4\cos\theta}$ by contour integration.